
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015 pp. 808-812
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

128 Points Low Area and Highly Pipelined
FFT(Fast Fourier Transform) Processor

Monica Vats1 and Nidhi Singh2
1M.tech VLSI Design Department of ECE SRM University Delhi-Ncr

2Department of ECE SRM University Delhi-Ncr
E-mail: 1moni.27m91@gmail.com

Abstract—This paper represents low power and high speed 128-
point pipelined Fast Fourier Transform (FFT) processor. The 128-
point architecture consists of an optimized pipeline implementation
processor . In the processor 128 -point DFT is divided into two
smaller 8- and 16-point DFTs. The 8- and 16 -point DFTs are
implemented by the Winograd small point FFT algorithms. The
FFT128 processor has the minimum multiplier number which is
equal to 4. These facts makes this FFT Processor attractive to
implement in ASIC for used in OFDM modems, software defined
radio, multichannel coding, and wideband Spectrum analysis.

1. INTRODUCTION

The FFT (Fast Fourier Transform) and its inverse (IFFT) are
the key components of OFDM (Orthogonal Frequency
Division Multiplexing) systems. Recently, the demand for
long length, high-speed and low-power FFT has increased in
the OFDM applications.

 There are three kinds of main design architectures for
implementing a FFT processor. One is the single-memory
architecture. It has one processing element and one main
memory. Hence, it occupies a small area. The second is the
dual memory architecture, which has two memories. This
architecture has a higher throughput than the single-memory
architecture because it can store butterfly outputs and read
butterfly inputs at the same time. The fast Fourier transform
plays an important role in many digital signal processing
(DSP) systems.

 Recent advances in semiconductor processing technology
have enabled the deployment of dedicated FFT processors in
applications such as telecommunications, speech and image
processing. Specifically, in the OFDM communication
systems, FFT and inverse FFT (IFFT) play a very important
role. The OFDM technique, due to its effectiveness in
overcoming adverse channel effects [1, 2] as well as spectrum
utilization, has become widely adopted in wire line and
wireless communication standards.

The OFDM technique has been adopted in several standards
like digital audio broadcasting (DAB) [3], digital video
broadcasting terrestrial (DVB-T) [4], asymmetrical digital

subscriber line (ADSL) [5] and very-high-speed digital
subscriber line (VDSL) [6]. Therefore, efficient and low-
power VLSI implementation of FFT processors is essential for
successful deployment of these OFDM-based systems.
According to the standards of DAB, DVB-T, ADSL and
VDSL, various FFT sizes are required.

In the proposed processor 128 -point DFT is divided into two
smaller 8- and16-point DFTs. The 8- and 16 -point DFTs are
implemented by the Winograd small point FFT algorithms.
This algorithm performs the convolution with minimum
number of multiplications and additions and thus the
computational complexity of the process is greatly reduced.
As a result, The FFT128 processor has the minimum
multiplier number which is equal to 4.

FFT8 and FFT16 calculations are implements in highly
pipelined architecture.The 8-point and 16-point DFT
algorithm is divided into several stages which enables pipeline
implementation in eachstage. Therefore in each clock cycle
one complex number is read from the input data buffer RAM
and the complex result is written in the output buffer RAM.

These facts makes this FFT Processor attractive to implement
in ASIC for used in OFDM modems, software defined radio,
multichannel coding, and wideband Spectrum analysis.

The discrete Fourier transform (DFT) is an important
algorithm in the field of digital signal processing. It transforms
a signal from the time domain into the frequency domain,
providing information about the spectrum of the signal. DFT
is the decomposition of a sampled signal in terms of sinusoidal
(complex exponential) components. The symmetry and
periodicity properties of the DFT are exploited to significantly
lower its computational requirements

The direct computation of an N-point DFT requires to
calculate a number of operations proportional to N2. In order
to reduce the number of arithmetic operations, many fast
algorithms have been proposed. These algorithms are based on
decomposing an N-point DFT recursively into smaller DFTs,
leading to a reduction of the computational complexity which

128 Points Low Area and Highly Pipelined FFT(Fast Fourier Transform) Processor 809

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

lead to lesser hardware. The resulting algorithms are known as
Fast Fourier Transforms (FFTs).

An 128-point DFT computes a sequence x(n) of 128 complex-
valued numbers given another sequence of data X(k) of length
128 according to the formula

To simplify the notation, the complex-valued phase factor e –
j2 nk/128 is usually defined as W128n where: W128 = cos(2π
/128) – j sin(2π /128). The FFT algorithms take advantage of
the symmetry and periodicity properties of W128n to greatly
reduce the number of calculations that the DFT requires. In an
FFT implementation the real and imaginary components of
WnN are called twiddle factors.

The basis of the FFT is that a DFT can be divided into smaller
DFTs. In the processorFFT128 a mixed radix 8 and 16 FFT
algorithm is used. It divides DFT into two smaller DFTs of the
length 8 and 16, as it is shown in the formula:

which shows that 128 -point DFT is divided into two smaller
8- and16-point DFTs. The input complex data x(n) are
represented by the 2-dimensional array of data x(16l+m). The
columns of this array are computed by 8-point DFTs. The
results of them are multiplied by the twiddle factors W128ms .
And the resulting array of data X(16r+s) is derived by 16-
point DFTs of rows of the intermediate result array.

The 8- and 16 -point DFTs are implemented by the Winograd
small point FFT algorithms, which provide the minimum
additions and multiplications. As a result, the radix-16 FFT
algorithm needs only 128 complex multiplications to the
twiddle factors W128ms and a set of multiplications to the
twiddle factors W16sl except of 32768 complex
multiplications in the origin DFT.

Fig. 1: FFT 128

Table 1: Signal Description

2. FFT 128

It performs one dimensional 128 – complex point FFT. The
data and coefficient widths are adjustable in the range 8 to 16.

Features

 128 -point radix-8 FFT.
 Forward and inverse FFT.
 Pipelined mode operation, each result is outputted in one

clock cycle, simultaneous loading/downloading
supported.

 Input data, output data, and coefficient widths are
parametrizable in range 8 to 16 and more.

 Two and three data buffers are selected.
 Overflow detectors of intermediate and resulting data are

present.

Fig. 2: FFT 128 Top Module

2.1 BUFRAM128

BUFRAM128 is the data buffer, which consists of the two
port synchronous RAM of the volume 512 complex data, and
the write-read address counter. The real and imaginary partsof
the data are stored in the natural ascending order as in the
diagram in the Fig. . By the START impulse the address
counter is reset and then starts to count (signal addrw). The
input data DR and DI are stored to the respective address place
by the rising edge of the clock signal.

Monica Vats and Nidhi Singh

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

810

After writing 128 data beginning at the START signal, the unit
outputs the ready signal RDY and starts to write the next 128
data to the second half of the memory. At this period of time it
outputs the data stored in the first half of the memory. When
this data reading is finished then the reading of the next array
is starting. This process is continued until the next START
signal or RST signal are entered. The reading address
sequence is 8-6-th inverse order, i.e. the order is
0,16,32,...240,1,17,33, Really the reading address is
derived from the writing address by swapping 4 LSB and 4
MSB address bits.

2.2 FFT16

The datapath FFT16 implements the 16-point FFT algorithm
in the pipelined mode. 16 input complex data are calculated
for 46 clock cycles, but each new 16 complex results are
outputted each 16 clock cycles. The FFT algorithm of this
transform is selected from the book "H.J.Nussbaumer.

t1:=x(0) + x(8); m4:=x(0) – x(8);

t2:=x(4) + x(12); m12:= – j*(x(4)–x(12));

t3:=x(2) + x(10); t4:=x(2) – x(10);

t5:=x(6) + x(14); t6:=x(6) – x(14);

t7:=x(1) + x(9); t8:=x(1) – x(9);

t9:=x(3) + x(11); t10:=x(3) – x(11);

t11:=x(5) + x(13); t12:=x(5) – x(13);

t13:=x(7) + x(15); t14:=x(7) – x(15);

t15:=t1 + t2; m3:= t1 – t2;

t16:=t3 + t5; m11:= –j*(t3 – t5);

t17:=t15 + t16; m2:= t15 – t16;

t18:=t7 + t11; t19:= t7 – t11;

t20:=t9 + t13; t21:= t9 – t13;

t22:=t18 + t20; m10:= – j*(t18 – t20);

t23:=t8 + t14; t24:= t8 – t14;

t25:=t12 + t10; t26:= t12 – t10;

m0:=t17 + t22; m1:=t17 – t22;

m13:= –j* sin(p/4)*(t19 + t21);

m5:= cos(p/4)*(t19 – t21);

m6:= cos(p/4)*(t4 – t6);

m14:=–j* sin(p/4)*(t4 + t6);

m7:= cos(3p/8)*(m24+m26);

 m15:= –j* sin(3p/8)*(t23 + t25);

m8:= (cos(p/8) + cos(3p/8))*t24;

 m16:= –j* (sin(p/8) – sin(3p/8))*t23;

m9:=– (cos(p/8) - cos(3p/8))*t26;

m17:= –j*(sin(p/8) + sin(3p/8))*t25;

s7:= m8 – m7; s15:= m15 – m16;

s8:= m9 – m7; s16:= m15 – m17;

s1:=m3 + m5; s2:=m3 – m5;

s3:=m13 + m11; s4:=m13 – m11;

s5:=m4 + m6; s6:=m4 – m6;

s9:=s5 + s7; s10:=s5 – s7;

s11:=s6 + s8; s12:=s6 – s8;

s13:=m12 + m14; s14:=m12 – m14;

s17:=s13 + s15; s18:=s13 – s15;

s19:=s14 + s16;

y(0):=m0;

y(1):=s9 + s17;

y(2):=s1 + s3;

y(3):=s12 – s20;

y(4):=m2 + m10;

y(5):=s11 + s19;

y(6):=s2 + s4;

y(7): =s10 – s18;

s20:=s14 – s16;

y(8):=m1;

y(15):=s9 – s17;

y(14):=s1 – s3;

y(13):=s12 + s20;

y(12):=m2 – m10;

y(11):=s11 – s19;

y(10):=s2 – s4;

y(9):=s10 + s18;

where x and y are input and output arrays of the complex data,
t1,…,t26, m1,…, m17,s1,…,s20 are the intermediate complex
results, j = v(-1). As we see the algorithm contains only 20
real multiplications to the untrivial coefficients sin(p/4) =
0.7071; sin(3p/8) = 0.9239; cos(3p/8) = 0.3827; (cos(p/8) +
cos(3p/8)) =1.3066; (sin(p/8) – sin(3p/8)) = 0.5412; and 156
real additions and subtractions.

The counter ct counts the working clock cycles from 0 to 15.
So a single inferred adder adds x(0) + x (8) in one cycle, x(1)
+ x(9) in the next cycle, D(1) + D(5) in another cycle and so

128 Points Low Area and Highly Pipelined FFT(Fast Fourier Transform) Processor 811

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

on, and x(7) + x(15) in the final cycle of the sequence of
cycles deriving the results t1,t7,t9,…,t13 respectively.

Four constant multipliers are used to derive the multiplication
to 5 different coefficients. So the unit in MPUC707.v
implements the multiplication to the coefficient 0.7071 in the
pipelined manner. Note that the unit MPUC924_383.v
implements the multiplication both to 0.9239 and to 0.3827.
The multipliers use the adder tree, which adds the
multiplicand shifted to different bit numbers. For example, for
short input bit width the coefficient , for long input bit width it
is approximated as 0.10110101000000101 2 0.7071 is
approximated as 0.10110101 2 . The long coefficient bit width
is set by the parameter FFT128bitwidth_coef_high. The first
kind of the constant multiplier occupies 3 adders, and the
second one occupies 4 adders.

The importance of the long coefficient selection is seen from
the following fact. When the input bit width is 16 and higher,
the selection of the long coefficient bit width decreases the
FFT128 result error in two times.

 The FFT16 unit implements both FFT and inverse FFT
depending on the parameter FFT128paramifft. Practically the
inverse FFT is implemented on the base of the direct FFT by
the inversion of operations in the final stage of computations
for all the results except y(0), y(8). For example, y(1):=s9 +
s17; is substituted to y(1):=s9 – s17;

The FFT16 unit starts its operation by the START impulse.
The first result is preceded by the RDY impulse which is
delayed from the START impulse to 30 clock impulses. The
output results have the bit width which is in 4 higher than the
input data bit width. That means that all the calculations
except multiplication by coefficients like 0.7071 are
implemented without truncations, and therefore, the FFT128
results have the minimized errors comparing to other FFT
processors.

2.3 FFT8

The datapath FFT8 implements the 8-point FFT algorithm in
the pipelined mode. 8 input complex data are calculated for 22
clock cycles, but each new 8 complex results are outputted
each 8 clock cycles. The FFT algorithm of this transform is
selected from the book "H.J.Nussbaumer. FFT and
convolution algorithms". Due to this algorithm the
calculations are:

t1=D(0) + D(4); m3=D(0) - D(4);

t2=D(6) + D(2); m6=j*(D(6)-D(2));

t3=D(1) + D(5); t4=D(1) - D(5);

t5=D(3) + D(7); t6=D(3) - D(7);

t8=t5 + t3; m5=j*(t5-t3);

t7=t1 + t2; m2=t1 - t2;

m0=t7 + t8; m1=t7 - t8;

m4=sin(p/4)*(t4 - t6);

m7=-j* sin(p/4)*(t4 + t6);

s1=m3 + m4; s2=m3 - m4;

s3=m6 + m7; s4=m6 - m7;

DO(0)=m0; DO(4)=m1;

DO(1)=s1 + s3; DO(7)=s1 - s3;

DO(2)=m2 + m5; DO(6)=m2 - m5;

DO(5)=s2 + s4; DO(3)=s2 - s4;
where DI and DO are input and output arrays of the complex
data, j = v(-1), t1,…,t8, m1,…, m7, s1,…,s4 are the
intermediate complex results. As we see the algorithm
contains only 4 multiplications to the untrivial coefficient
sin(p/4) = 0.7071, and 26*2 real additions and subtractions.
The multiplication to a coefficient j means the negation the
imaginary part and swapping real and imaginary parts.

The FFT8 unit starts its operation by the START impulse. The
first result is preceded by the RDY impulse which is delayed
from the START impulse to 17 clock impulses.

 2.4 CNORM

During computations in FFT8 and FFT16 the data magnitude
increases up to 8 and 16 times, respectively, and the FFT128
result can increase up to 128 times depending on the spectrum
properties of the input signal. Therefore, to prevent the signal
dynamic bandwidth loose, the output signal bit width must be
at least in 8 bits higher than the input signal bit width. To
prevent this bit width increase, to provide the proper signal
dynamic bandwidth, and to ease the next computation of the
derived spectrum, the CNORM units are attached to the
outputs of the FFT16 units.

CNORM unit provides the data shift left to 0,1,2, and 3 bits
depending on the code SHIFT. The input data width is nb+3
and the output data width is nb+2, where nb is the given
processor input bit width. The overflow occurs in CNORM
unit when the SHIFT code is given too high. The SHIFT code
must be set by the customer to prevent the data overflow and
to provide the proper dynamic bandwidth. The CNORM unit
contains the overflow detector with the output OVF. When
FFT128 core in operation, a 1 at the output OVF signals that
for some input data an overflow occurred. OVF flag is resetted
by the RST or START signal.

The SHIFT inputs of two CNORM stages are concatenated to
the 4-bit input SHIFT of the FFT128 core, 2 LSB bits control
the first stage, and 2 MSB bits do the second stage.

Monica Vats and Nidhi Singh

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

812

The selection of the proper SHIFT code depends on the
spectrum property of the input signal. When the input signal is
the sinusoidal one or contains a few of sinusoids, and the noise
level is small then SHIFT =0000, or 0001, or 0010. When the
input signal is a noisy signal then SHIFT can be 1100 and
higher. When the input signal has the stable statistic properties
then the code SHIFT can be set as a constant. Then the OVF
outputs can be not in use, and the CNORM units will be
removed from the project by the hardware optimization when
the core is synthesized.

2.5 Rotator 128
The unit ROTATOR implements the complex vector rotating
to the angles W 128 ms . The complex twiddle factors are
stored in the unit WROM128. Here the ROM contains the
following table of coefficients

(w0, w0, w0, w0, w0, w0, w0, w0, w0, w0, w0, w0, w0, w0,
w0, w0, w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11,
w12, w13, w14, w15, w0, w3, w6, w9, w12,w15,w18,w21,
w24, w27, w30, w33, w36, w39,
w42,w45,…w0,w7,w15,w23,w31,w39,w47,w55,w63,w71,w7
9,w97,w103,w111,w119,w127), where wi = W 128 I .

Here the row and column indexes are m and s respectively.
These coefficients are read in the natural order addressing by
the 7-bit counter addrw. The complex vector rotating is
implemented by the usual schema of the complex number
multiplier which contains 4 multiply units and 2 adders.

3. INPUT AND OUTPUT WAVEFORM

Fig 3: Input Waveform

Fig. 4: Output Waveform

4. CONCLUSION AND FUTURE WORK:

The FFT Processor converts the time domain signal into
frequency domain signal. This 128 point FFT Processor is
made up of FFT 8 and FFT 16 using Winograd algorithm.
Here we have designed the FFT processor such that the total
number of multiplier used are 4 (complex multiplier). Further
improvement can be made using different algorithm for FFT.

REFERENCES

[1] W.Li, L.Wanhammar, “Complex multiplication reduction in
FFT processor,” SSoCC'02, Falkenberg, Sweden, Mar. 2002.

[2] Weidong Li, “Studies on implementation of lower power FFT
processors,” Linköping Studies in Science and Technology,
Thesis No.1030, ISBN 91-7373-692-9, Linköping, Sweden, Jun.
2003

[3] P.Verma, H. Kaur, M.Singh, M, B.Singh, “ VHDL
Implementation of FFT/IFFT Blocks for OFDM,” In Proc. of
Intern. Conf. on Advances in Recent Technologies in
Communication and Computing, pp. 186-188, PI. 978-1-4244-
5104-3, Kerala, 2009.

[4] S. Minhyeok, L. Hanho, A High-Speed FourParallel Radix-24
FFT/IFFT Processor for UWB Applications, in Proc. IEEE Int.
Symp. Circuits and Systems, 2008, pp. 960-963.

[5] M.Arioua, S.Belkouch, M.M.Hassani, “Complex multiplication
reduction in pipeline FFT architecture,” In Proc. of 20th Intern.
Conf. on Computer Theory and Applications (ICCTA),
Alexandria, Egypt, Oct. 2010.

